

The Heritage Computer Challenge

2004

Heritage High School

Newport News, Virginia

Java

Instructions

The problems for this contest appear on the following pages, listed in order of difficulty. The maximum number of
points you can earn is indicated under the title to each problem.

Problems are designed in the format used by The Great Computer Challenge, held annually each Spring at Old
Dominion University. Some of these problems were actually used at the Great Computer Challenge in previous years.

How to save your work:

Create a folder on your personal drive K named hcc2004. All other project folders will created inside this folder.1.

Each solution should be saved as a project in a folder whose name is IDENTICAL to the project file name (minus
the extension).

2.

********** Problems **********

1. Where is My Robot? (10 points)

2. Palindromic Primes (10 points)

3. Perfect Numbers (20 points)

4. The Krypton Factor (20 points)

5. Ooey GUI Calculator (30 points)

Where is My Robot?

(10 points)

Save in folder named: Robot

The problem is one of finding the coordinates of the missing Robot. The Robot is known to have strted at the Cartesian coordinates of (0,0) and to have made

a series of moves as dictated by his input sequence. Each step in the input sequence is one of the words north, south, east, and west. For an input of east, the

Robot moves on unit in the positive x direction and of course no go west the Robot moves on unit in the negative x direction. Similarly a movement to the

north casues the y value to increase by one while south causes the y value to decrease by one.

Given an input sequence, your program must tell us the final coordinates of the Robot.

Input to your program will be a series of directions (north, south, east, or west) each separated by one space.

The output to your program will be the final locatin of the Robot in Cartesian coordinates.

Sample

Input
west south east east east north north

Output
(2,1)

Palindromic Primes

(10 points)

Save in folder named: PalPrimes

A "palindromic prime" is a prime that is also a prime when its digits are reversed. 11, 13, and 17 are such primes.

Find and display the next ten "palindromic primes" that are not reversals of a smaller palindromic prime. Thus, 31 and 71 would not be displayed because they

are the reversals of 13 and 17, which are already listed.

When you run out of two-digit numbers, switch to three, etc.

Perfect Numbers

(20 points)

Save in folder named: Perfect

The Greeks began an examination of numerology by classifying all positive integers as either perfect, abundant, or deficient. This classification scheme is

based on the factors (even divisors) of the number. If the sum of all the factors of a number (excluding the number itself) equals the number then it is said to

be perfect. For example, the factors of 6 are 1, 2, 3, and 6. Therefore, the number 6 is a perfect number. The total of the factors of 6 (excluding 6 itself) is 1

+ 2 + 3 = 6.

An abundant number is one in which this sum of its factors (excluding the number itself) is greater than the number. An example of an abundant number is

12 because 1 + 2 + 3 + 4 + 6 = 16 > 12. All numbers that are neither perfect nor abundant are deficient.

This program accepts a sequence of integers, calssifies each as abundant, perfect, or deficient and displays the factors of the number. It terminates when given

a input of zero.

For input, the user is prompted by "Specify a positive integer (0 to quit): ".

For output, display a line like "This number is type (factors givein below)." where type is either perfect, abundant, or deficient. On the following line, the

factors of the input integer are shown.

Sample:

Specify a positive integer (0 to quit): 6

This number is perfect (factors given below).

1 2 3

Specify a positive integer (0 to quit): 12

This number is abundant (factors given below).

1 2 3 4 6

Specify a positive integer (0 to quit): 333

This number is deficient (factors given below).

1 3 9 37 111
Specify a positive integer (0 to quit): 0

The Krypton Factor
(20 points)

You have been employed by the organisers of a Super Krypton Factor Contest in which contestants have very high mental and physical abilities. In one section

of the contest the contestants are tested on their ability to recall a sequence of characters which has been read to them by the Quiz Master. Many of the

contestants are very good at recognising patterns. Therefore, in order to add some difficulty to this test, the organisers have decided that sequences containing

certain types of repeated subsequences should not be used. However, they do not wish to remove all subsequences that are repeated, since in that case no single

character could be repeated. This in itself would make the problem too easy for the contestants. Instead it is decided to eliminate all sequences containing an

occurrence of two adjoining identical subsequences. Sequences containing such an occurrence will be called ``easy''. Other sequences will be called ``hard''.

For example, the sequence ABACBCBAD is easy, since it contains an adjoining repetition of the subsequence CB. Other examples of easy sequences are:

BB

ABCDACABCAB

ABCDABCD

Some examples of hard sequences are:

D

DC

ABDAB

CBABCBA

In order to provide the Quiz Master with a potentially unlimited source of questions you are asked to write a program that will read input lines that contain

integers n and L (in that order), where n > 0 and L is in the range 1 <= L <= 26, and for each input line prints out the nth hard sequence (composed of letters

drawn from the first L letters in the alphabet), in increasing alphabetical order (alphabetical ordering here corresponds to the normal ordering encountered in a

dictionary), followed (on the next line) by the length of that sequence. The first sequence in this ordering is A. You may assume that for given n and L there do

exist at least n hard sequences.

For example, with L = 3, the first 7 hard sequences are:

A

AB

ABA

ABAC

ABACA

ABACAB

ABACABA

As each sequence is potentially very long, split it into groups of four (4) characters separated by a space. If there are more than 16 such groups, please start a

new line for the 17th group.

Therefore, if the integers 7 and 3 appear on an input line, the output lines produced should be

ABAC ABA

7

Input is terminated by a line containing two zeroes. Your program may assume a maximum sequence length of 80.

Sample Input

30 3

0 0

Sample Output

ABAC ABCA CBAB CABA CABC ACBA CABA

28

Ooey GUI Calculator
(30 points)

Save in folder named: Calculator

Using a GUI interface, design and implement a four-function calculator. The precise layout is up to you. But it should look and function like a simple

calculator.

A field across the top should display the numerical data. All operations of the calculator, including numerical input, should be accomplished by clicking

buttons--NOT BY TYPING.

Buttons should include: 0,1,2,3,4,5,6,7,8,9, +, -, x, /(divide), =, and C(clear).

The display field changes as the buttons are pressed appropriately.

Sample calculations (does not show the intermediate display as buttons are clicked):

Button Sequence (that begins with a cleared calculator) Final Display

5 + 3 - 2 = 6

4 2 + 3 = 45

5 + 3 = / 2 = 4

5 + 3 = 5 + 1 = 6

