
C++ ~ Newport News Computer Challenge 2004

C++ ~ Newport News Computer Challenge 2004

TTeeaamm PPaacckkeett

CC++++

PPrroobblleemmss

The 3
rd

 Annual Newport News Computer Challenge

Thursday, February 19, 2004

C++ ~ Newport News Computer Challenge 2004

List of Problems ~ Page 1 of 1

C++ ~ Newport News Computer Challenge 2004

List of Problems ~ Page 1 of 1

C++ Problems

Distance 3D ~ 10 points

Divisors ~ 20 points

Smith Numbers ~ 20 points

Mouse Clicks ~ 30 points

The 3
rd

 Annual Newport News Computer Challenge

Thursday, February 19, 2004

C++ ~ Problem for Newport News Computer Challenge 2004

Distance 3D ~ Page 1 of 1

C++ ~ Problem for Newport News Computer Challenge 2004

Distance 3D ~ Page 1 of 1

Distance 3D (10 points)

Write a C++ program that calculates the distance between a pair of points on a three dimensional

Cartesian coordinate system.

The distance d between two points, (x1,y1,z1) and (x2,y2,z2), on a three dimensional Cartesian coordinate

system is

() () ()222
212121 xzyyxxd −+−+−=

Input Specification

On one line enter three integers—the coordinates of the first point. On another line enter three integers—

the coorindates of the second point.

Output Specification

Display a line that says “The distance from (x,y,z) to (a,b,c) is d.ddd” where x, y, z, a, b, and c stand for

the actual integers input by the user and d.ddd stands for the distance between those two points with three

decimal places displayed (0’s if needed) and rounded to the nearest thousandth.

Sample runs (without the heading, etc.)

Enter coordinates of the first point: 0 0 0

Enter coordinates of the second point: 0 0 0

The distance from (0,0,0) to (0,0,0) is 0.000

Enter coordinates of the first point: 1 -2 3

Enter coordinates of the second point: 1 -2 4

The distance from (1,-2,3) to (1,-2,4) is 1.000

Enter coordinates of the first point: 1 2 3

Enter coordinates of the second point: 4 5 6

The distance from (1,2,3) to (4,5,6) is 5.196

Enter coordinates of the first point: 18 22 72

Enter coordinates of the second point: -122 -144 99

The distance from (18,22,72) to (-122,-144,99) is 218.826

The 3
rd

 Annual Newport News Computer Challenge

Thursday, February 19, 2004

C++ ~ Problem for Newport News Computer Challenge 2004

Divisors ~ Page 1 of 1

C++ ~ Problem for Newport News Computer Challenge 2004

Divisors ~ Page 1 of 1

Divisors (20 points)

Mathematicians love all sorts of odd properties of numbers. For instance, they consider 945 to be an

interesting number, since it is the first odd number for which the sum of its divisors is larger than the

number itself.

To help them search for interesting numbers, you are to write a program that scans a range of numbers and

determines the number that has the largest number of divisors in the range. Unfortunately, the size of the

numbers, and the size of the range is such that a too simple-minded approach may take too much time to

run. So make sure that your algorithm is clever enough to cope with the largest possible range in just a

few seconds.

Input Specification

The first line of input specifies the number N of ranges, and each of the N following lines contains a

range, consisting of a lower bound L and an upper bound U, where L and U are included in the range. L

and U are chosen such that 1 <= L <= U <= 1,000,000,000 and 0 <= U - L <= 10,000.

Output Specification

For each range, find the number P which has the largest number of divisors (if several numbers tie for first

place, select the lowest), and the number of positive divisors D of P (where P is included as a divisor).

Print the text 'Between L and H, P has a maximum of D divisors.', where L, H, P, and D are the

numbers as defined above.

Example input
3

1 10

1000 1000

999999900 1000000000

Example output
Between 1 and 10, 6 has a maximum of 4 divisors.

Between 1000 and 1000, 1000 has a maximum of 16 divisors.

Between 999999900 and 1000000000, 999999924 has a maximum of 192 divisors.

The 3
rd

 Annual Newport News Computer Challenge

Thursday, February 19, 2004

C++ ~ Problem for Newport News Computer Challenge 2004

Smith Numbers ~ Page 1 of 2

C++ ~ Problem for Newport News Computer Challenge 2004

Smith Numbers ~ Page 1 of 2

Smith Numbers (20 points)

Background

While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University ,

noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The

sum of the digits of that number was equal to the sum of the digits of the prime factors of that number.

Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime

factors in the following way:

4937775 = 3 * 5 * 5 * 65837

The sum of all digits of the telephone number is 4+9+3+7+7+7+5=42, and the sum of the digits of its

prime factors is equally 3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named

this type of number after his brother-in-law: Smith Numbers.

As this observation is also true for every prime number, Wilansky decided later that a (simple and

unsophisticated) prime number is not worth being a Smith Number and he excluded them from the

definition.

Problem

Wilansky published an article about Smith Numbers in the Two Year College Mathematics Journal and

was able to present a whole collection of different Smith Numbers: For example, 9985 is a Smith Number

and so is 6036. However, Wilansky was not able to give a Smith Number which was larger than the

telephone number of his brother-in-law. It is your task to find Smith Numbers, including those which may

be larger than 4937775, but you must do it like this:

Input

Prompt the user repeatly for a positive integer (0 to 2 billion). Input ceases when the user enters 0 or less.

Output

For every input value n, you are to compute the smallest Smith Number which is larger than n and display

it, its prime factors, the sum of its digits, and the sum of the digits of its prime factors. But you must do

so using the format of the Sample Run that follows.

The 3
rd

 Annual Newport News Computer Challenge

Thursday, February 19, 2004

C++ ~ Problem for Newport News Computer Challenge 2004

Smith Numbers ~ Page 2 of 2

C++ ~ Problem for Newport News Computer Challenge 2004

Smith Numbers ~ Page 2 of 2

Sample Run
Smith Number Tester. By C. Monroe

This program will find the next larger Smith Number

of any positive integer that you enter, and explain

why it is a Smith Number.

Enter your positive integer (0 or less quits): 1000

The next Smith Number larger than 1000 is 1086 because

1086 = 2 * 3 * 181

and

1+0+8+6 = 2+3+1+8+1 = 15

Enter your positive integer (0 or less quits): 4937774

The next Smith Number larger than 4937774 is 4937775 because

4937775 = 3 * 5 * 5 * 65837

and

4+9+3+7+7+7+5 = 3+5+5+6+5+8+3+7 = 42

Enter your positive integer (0 or less quits): 87654321

The next Smith Number larger than 87654321 is 87654327 because

87654327 = 3 * 29 * 131 * 7691

and

8+7+6+5+4+3+2+7 = 3+2+9+1+3+1+7+6+9+1 = 42

Enter your positive integer (0 or less quits): 0

Press any key to continue . . .

C++ ~ Problem for Newport News Computer Challenge 2004

Mouse Clicks ~ Page 1 of 2

C++ ~ Problem for Newport News Computer Challenge 2004

Mouse Clicks ~ Page 1 of 2

Mouse Clicks (30 points)

A typical windowing system on a computer will provide a number of icons on the screen as well as some

defined regions. When the mouse button is clicked, the system has to determine where the cursor is and

what is being selected. For this problem we assume that a mouse click in (or on the border of) a region

selects that region, otherwise it selects the closest visible icon (or icons in the case of a tie).

Consider the following screen. Rectangles represent regions. Squares represent icons. Circles represent

mouse click locations.

A mouse click at ‘a’ will select region A. A mouse click at ‘b’ will select icon 1. A mouse click at ‘c’ will

select icons 6 and 7. A mouse click at ‘d’ is ambiguous. The ambiguity is resolved by assuming that one

region is in front of another. In the data files, later regions can be assumed to be in front of earlier regions.

Since regions are labelled in order of appearance (see later) ‘d’ will select C. Note that regions always

overlap icons so that obscured icons need not be considered and that the origin (0,0) is at the top left

corner.

Write a program that will read in a series of region and icon definitions followed by a series of mouse

clicks and return the selected items. Coordinates will be given as pairs of integers in the range 0..499 and

you can assume that all icons and regions lie wholly within the screen. Your program must number all

icons (even invisible ones) in the order of arrival starting from 1 and label regions alphabetically in the

order of arrival starting from `A'.

Input

Input will consist of a series of lines. Each line will identify the type of data: I for icon, R for region and

M for mouse click. There will be no separation between the specification part and the event part, however

no icon or region specifications will follow the first mouse click. An I will be followed by the coordinates

The 3
rd

 Annual Newport News Computer Challenge

Thursday, February 19, 2004

C++ ~ Problem for Newport News Computer Challenge 2004

Mouse Clicks ~ Page 2 of 2

C++ ~ Problem for Newport News Computer Challenge 2004

Mouse Clicks ~ Page 2 of 2

of the centre of the icon, R will be followed by the coordinates of the top left and bottom right corners

respectively and M will be followed by the coordinates of the cursor at the time of the click. There will

always be at least one visible icon and never more than 25 regions and 50 icons. The entire file will be

terminated by a line consisting of a single #.

Output

Output will consist of one line for each mouse click, containing the selection(s) for that click. Regions

will be identified by their single character identifier, icon numbers will be written out right justified in a

field of width 3, and where there is more than one icon number they will appear in increasing numerical

order.

Sample input
I 216 28

R 22 19 170 102

I 40 150

I 96 138

I 36 193

R 305 13 425 103

I 191 184

I 387 200

R 266 63 370 140

I 419 134

I 170 102

M 50 50

M 236 30

M 403 167

M 330 83

Sample output
A

 1

 6 7

C

