

The Heritage Computer Challenge

2005

Heritage High School

Newport News, Virginia

C++

Instructions

The problems for this contest appear on the following pages, listed in order of difficulty. The maximum number of
points you can earn is indicated under the title to each problem.

Problems are designed in the format used by The Great Computer Challenge, held annually each Spring at Old
Dominion University. Some of these problems were actually used at the Great Computer Challenge in previous years.

How to save your work:

Create a folder on your personal drive K named hcc2005. All other project folders will created inside this folder.1.

Each solution should be saved as a project in a folder whose name is IDENTICAL to the project file name (minus
the extension). For each project, place your source code in the default source file named main.cpp.

2.

********** Problems **********

1. Where is My Robot? (10 points)

2. Perfect Numbers (20 points)

3. Cryptarithm (20 points)

4. Roman Cash Register (30 points)

Where is My Robot?

(10 points)

Save in folder named: Robot

The problem is one of finding the coordinates of the missing Robot. The Robot is known to have strted at the Cartesian coordinates of (0,0) and to have made

a series of moves as dictated by his input sequence. Each step in the input sequence is one of the words north, south, east, and west. For an input of east, the

Robot moves on unit in the positive x direction and of course no go west the Robot moves on unit in the negative x direction. Similarly a movement to the

north casues the y value to increase by one while south causes the y value to decrease by one.

Given an input sequence, your program must tell us the final coordinates of the Robot.

Input to your program will be a series of directions (north, south, east, or west) each separated by one space.

The output to your program will be the final locatin of the Robot in Cartesian coordinates.

Sample

Input
west south east east east north north

Output
(2,1)

Perfect Numbers

(20 points)

Save in folder named: Perfect

The Greeks began an examination of numerology by classifying all positive integers as either perfect, abundant, or deficient. This classification scheme is

based on the factors (even divisors) of the number. If the sum of all the factors of a number (excluding the number itself) equals the number then it is said to

be perfect. For example, the factors of 6 are 1, 2, 3, and 6. Therefore, the number 6 is a perfect number. The total of the factors of 6 (excluding 6 itself) is 1

+ 2 + 3 = 6.

An abundant number is one in which this sum of its factors (excluding the number itself) is greater than the number. An example of an abundant number is

12 because 1 + 2 + 3 + 4 + 6 = 16 > 12. All numbers that are neither perfect nor abundant are deficient.

This program accepts a sequence of integers, calssifies each as abundant, perfect, or deficient and displays the factors of the number. It terminates when given

a input of zero.

For input, the user is prompted by "Specify a positive integer (0 to quit): ".

For output, display a line like "This number is type (factors givein below)." where type is either perfect, abundant, or deficient. On the following line, the

factors of the input integer are shown.

Sample:

Specify a positive integer (0 to quit): 6

This number is perfect (factors given below).

1 2 3

Specify a positive integer (0 to quit): 12

This number is abundant (factors given below).

1 2 3 4 6

Specify a positive integer (0 to quit): 333

This number is deficient (factors given below).

1 3 9 37 111
Specify a positive integer (0 to quit): 0

Cryptarithm

(20 points)

Save in folder named: Crypt

In a cryptarithm puzzle letters have been substituted for numbers in an arithmetic calculation. Each distinct letter is represented by a particular, but unique

digit. Code a program to find all the solutions to the following cryptarithm.

 OIL

 NO

 OIL

+ ON

 LINO

Note that the numbers of the solution(s) can not have leading zeros. The output should display the above cryptarithm followed by the solution(s) in the same

format.

Roman Cash Register

(30 points)

Save in folder named: Roman

Back in the days of the Classical Roman Empire, merchants filled the market places daily, toting their wares, while customers scurried about, ready to spend

their hard-earned wages. Customers were out to find a bargain. Merchants were out to make a dinari (the Roman unit of currency). Any merchant of those

days would have given his (or her) ivory false teeth to have a cash register--especially one that could add Roman numerals and compute the heavy ten percent

Roman sales tax.

Your job is to write a program that will simulate just such a cash register. Since Roman numerals didn't have decimal places, your ten percent tax should be

computed to the nearest whole dinari. And just for the convenience of people today, please display an extra column showing each amount in equivalent dollars

(US).

First have the user enter a maximum of five items, each followed by its price (in Roman numerals only, of course). Entering a blank ends the entry process

early. Then display, each on a separate line but in neat columns, each item, its Roman numeral price, and its price in U.S. dollars. Display a subtotal, then the

tax, and then the total.

Following is a sample run:

Roman Cash Register.

Enter up to 5 items and price below (blank to end early).

Item 1: SHIRT

Roman Price of SHIRT: XXI

Item 2: SHOES

Roman Price of SHOES: LIV

Item 3: TIE

Roman Price of TIE: XXIII

Item 4:

Item Price $ (US)

SHIRT XXI 21.00

SHOES LIV 54.00

TIE XXIII 23.00

Subtotal XCVIII 98.00

10% Tax X 10.00
Total CVIII 108.00

No single item should cost more than one hundred dinari.

