The Heritage Computer Challenge
2005
Heritage High School
Newport News, Virginia

Instructions

The problems for this contest appear on the following pages, listed in order of difficulty. The maximum number of
points you can earn is indicated under the title to each problem.

Problems are designed in the format used by The Great Computer Challenge, held annually each Spring at Old
Dominion University. Some of these problems were actually used at the Great Computer Challenge in previous years.

How to save your work:

1. Create a folder on your personal drive K named hcc2005.

2. Create a workspace named hcc2005 and save it inside this folder.

3. Create all projects within this workspace.

4. Each solution should be saved as a project using the project name provided.

ckoskoskeskeskeskoskosk sk PrOblemS ssksfoskoskoskeskosko ko

1. Where is My Robot? (10 points)
2. Palindromic Primes (10 points)
3. Perfect Numbers (20 points)
4. Poly Wanna (30 points)

Where is My Robot?
(10 points)

Project Name: Robot

The problem is one of finding the coordinates of the missing Robot. The Robot is known to have strted at the Cartesian coordinates of (0,0) and to have made
a series of moves as dictated by his input sequence. Each step in the input sequence is one of the words north, south, east, and west. For an input of east, the
Robot moves on unit in the positive x direction and of course no go west the Robot moves on unit in the negative x direction. Similarly a movement to the
north casues the y value to increase by one while south causes the y value to decrease by one.

Given an input sequence, your program must tell us the final coordinates of the Robot.

Input to your program will be a series of directions (north, south, east, or west) each separated by one space.
The output to your program will be the final locatin of the Robot in Cartesian coordinates.

Sample

Input

west south east east east north north

Output
(2,1)

Palindromic Primes
(10 points)

Save in folder named: PalPrimes
A "palindromic prime" is a prime that is also a prime when its digits are reversed. 11, 13, and 17 are such primes.

Find and display the next ten "palindromic primes" that are not reversals of a smaller palindromic prime. Thus, 31 and 71 would not be displayed because they
are the reversals of 13 and 17, which are already listed.

When you run out of two-digit numbers, switch to three, etc.

Perfect Numbers
(20 points)

Save in folder named: Perfect

The Greeks began an examination of numerology by classifying all positive integers as either perfect, abundant, or deficient. This classification scheme is
based on the factors (even divisors) of the number. If the sum of all the factors of a number (excluding the number itself) equals the number then it is said to
be perfect. For example, the factors of 6 are 1, 2, 3, and 6. Therefore, the number 6 is a perfect number. The total of the factors of 6 (excluding 6 itself) is 1
+2+3=6.

An abundant number is one in which this sum of its factors (excluding the number itself) is greater than the number. An example of an abundant number is
12 because 1 +2 +3 +4 + 6 = 16 > 12. All numbers that are neither perfect nor abundant are deficient.

This program accepts a sequence of integers, calssifies each as abundant, perfect, or deficient and displays the factors of the number. It terminates when given
a input of zero.

For input, the user is prompted by "Specify a positive integer (0 to quit): ".

For output, display a line like "This number is type (factors givein below)." where type is either perfect, abundant, or deficient. On the following line, the
factors of the input integer are shown.

Sample:

Specify a positive integer (0 to quit): 6

This number is perfect (factors given below) .
123

Specify a positive integer (0 to quit): 12
This number is abundant (factors given below).
12346

Specify a positive integer (0 to quit): 333
This number is deficient (factors given below).

139 37 111
Specify a positive integer (0 to quit): 0

Poly Wanna
(30 points)

Save in folder named: PolyWanna

You promp the user to enter values for the center and radius of a circle followed by the number of sides of a regular polygon. Then you graphically draw the
circle with a regular polygon inscribed in the circle having the number of sides specified.

Here's a little help with the coding (which you'll only get here at the Heritage Computer Challenge). Start a GUI app, get rid of all the instance variables, and
then add your own static instance variables. Have the user input these values in the main method before you instantiate your JFrame. The add a special
method named paint like this:

public void paint (Graphics g)
{
super.paint (g);
g.drawLine (0,20,250,100);
// remove the sample line drawing command and put your own stuff here
// use online help for the Graphics class to figure out what to do

Sample run:

Poly Wanna ~ by Mr. C. Monroe
Enter x: 200

Enter y: 200

Enter radius: 150

How many sides to your polygon? 8

Resulting GUI output:
i Poly Wanna ~ by Mr. C. Monroe _|EI|5|

