
C++ ~ Newport News Computer Challenge 2010

C++ ~ Newport News Computer Challenge 2010

The 9th Annual Newport News Computer Challenge

 Thursday, February 18, 2010

TTeeaamm PPaacckkeett

CC++++

PPrroobblleemmss

C++ ~ Newport News Computer Challenge 2010

List of Problems ~ Page 1 of 1

C++ ~ Newport News Computer Challenge 2010

List of Problems ~ Page 1 of 1

The 9th Annual Newport News Computer Challenge

 Thursday, February 18, 2010

C++ Problems

Ugly Numbers ~ 10 points

1. INPUT n

2. PRINT n

3. IF n = 1 THEN STOP

� � �

The 3n + 1 Problem ~ 10 points

Credit Card Validation ~ 20 points

Long Multiplication ~ 20 points

C++ ~ Problem for Newport News Computer Challenge 2010

Ugly Numbers ~ Page 1 of 1

C++ ~ Newport News Computer Challenge 2010

Ugly Numbers ~ Page 1 of 1

The 9th Annual Newport News Computer Challenge

 Thursday, February 18, 2010

Ugly Numbers (10 points)

Ugly numbers are numbers whose only prime factors are 2, 3 or 5.

The sequence

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, ...

shows the first 11 ugly numbers. By convention, 1 is included.

Write a program that prompts the user to input a positive integer n and

outputs the nth ugly number followed by the next four ugly numbers.

C++ ~ Problem for Newport News Computer Challenge 2010

The 3n+1 Problem ~ Page 1 of 1

C++ ~ Newport News Computer Challenge 2010

The 3n+1 Problem ~ Page 1 of 1

The 9th Annual Newport News Computer Challenge

 Thursday, February 18, 2010

The 3n + 1 Problem (10 points)

Consider the following algorithm, expressed in psuedo-code of no particular computer language:

1. INPUT n

2. PRINT n

3. IF n = 1 THEN STOP

4. IF n is odd THEN n � 3n + 1

5. ELSE n � n/2

6. GOTO 2

(The � symbol means assignment.)

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1.

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity

of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n <

1,000,000 (and, in fact, for many more numbers than this.)

Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the

cycle-length of n. In the example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j inclusive.

Sample run:

The 3n + 1 Problem, by [your school & team name here]

Enter two positive integers, zeros to quit.

1 10

Maximum cycle length: 20

Enter two positive integers, zeros to quit.

100 200

Maximum cycle length: 125

Enter two positive integers, zeros to quit.

201 210

Maximum cycle length: 89

Enter two positive integers, zeros to quit.

900 1000

Maximum cycle length: 174

Enter two positive integers, zeros to quit.

0 0

Press Enter to continue . . .

C++ ~ Problem for Newport News Computer Challenge 2010

Credit Card Validation ~ Page 1 of 1

C++ ~ Newport News Computer Challenge 2010

Credit Card Validation ~ Page 1 of 1

The 9th Annual Newport News Computer Challenge

 Thursday, February 18, 2010

Credit Card Validation (20 points)
This problem lets you in on

a little secret used by banks

and lending institutions

(called the Luhn algorithm,

named after the IBM

scientist Hans Peter Luhn

who developed it in 1954) to

determine whether or not a credit card number is valid. What we’re talking about here is not whether a credit card

number is currently being used by someone, but rather whether or not the number COULD be used by someone,

should a bank or lending institution issue that number.

Below is the Luhn algorithm that tests for credit card validity:

Step Sample (using 5318-2795-1234-5678)

1. Reverse the order of the digits of the card number. 8765 4321 5972 8135

2. Beginning with the second digit and continuing with every

other digit…

These digits are 7, 5, 3, 1, 9, 2, 1, and 5.

3. Perform this function on each of these digits: double the

digit and (if the doubled result has two digits) add the digits of

the doubled result.

7 × 2 = 14, 1 + 4 = 5

5 × 2 = 10, 1 + 0 = 1

3 × 2 = 6

1 × 2 = 2

9 × 2 = 18, 1 + 8 = 9

2 × 2 = 4

1 × 2 = 2

5 × 2 = 10, 1 + 0 = 1

4. Find the sum of these results. The sum of 1, 2, 4, 9, 2, 6, 1, and 5 is 30.

5. Find the sum of the other digits. The sum of 3, 8, 7, 5, 2, 4, 6, and 8 is 43.

6. Add the two sums. 30 plus 43 is 73.

7. If the final result is divisible by 10, the credit card number

is valid. If not, it is invalid.

73 is not divisible by 10. Therefore the credit card number is

invalid.

Your job, however, is not to test for validity, but rather to allow the user to enter the first n-1 digits of a n-digit

credit card number and then output the digit that, if used as the n
th

 digit, would make the card number valid. Input

should allow dashes or spaces to be inserted anywhere in the number.

Samples:

First n-1 digits nth digit
5318-2795-1234-567 5

1234 12 123 2

000-000-100 8

000-000-1000 9

C++ ~ Problem for Newport News Computer Challenge 2010

Long Multiplication ~ Page 1 of 1

C++ ~ Newport News Computer Challenge 2010

Page 1 of 1

The 9th Annual Newport News Computer Challenge

 Thursday, February 18, 2010

Long Multiplication (20 points)

Given two positive integers in either order, display the problem as long multiplication,

each line correctly right-justified. The smaller integer should always be displayed as the

multiplier. For example, to display 34 times 1024:

 1024

 34

 4096

 3072

 34816

To get maximum points: Partial products equaling zero should be omitted. If the multiplier is a single digit, no partial products

should be displayed. The length of the first dashed line (if there) should equal the number of digits in the multiplicand or the

first partial product, whichever is larger. The length of the dashed line over the product should equal the number of digits in the

product. Input should continue until at least one zero is entered. Negative numbers should be rejected. Do not worry about

other invalid input. Do not worry about overflow.

Long Multiplication. By the C++ team at Sample High School.

Please enter two positive integers to multiply, either one zero to quit.

-1 234

Please enter two positive integers to multiply, either one zero to quit.

1234 23456

 23456

 1234

 93824

 70368

 46912

 23456

 28944704

Please enter two positive integers to multiply, either one zero to quit.

20304 102

 20304

 102

 40608

 20304

 2071008

Please enter two positive integers to multiply, either one zero to quit.

1234 3

 1234

 3

 3702

Please enter two positive integers to multiply, either one zero to quit.

0 1

Press any key to continue...

multiplicand

multiplier

partial products

product

The 9th Annual Newport News Computer Challenge

 Thursday, February 18, 2010

C++ Ruberics for Teams

Ugly Numbers (10 points)

Heading displays program name and team's name. 1

Prompts user to input a positive integer n. 1

Accepts the positive integer without crashing. 1

Outputs the nth ugly number… 3

…followed by the next four ugly numbers.
Score here is 1 point per correct number displayed minus 1 point per incorrect number displayed. Displaying more
than four numbers, correct or not, is a deduction of 1 point. Max 4, minimum 0.

4

TOTAL 10

The 3n + 1 Problem (10 points)

One or more heading lines with problem title, school name, and team name. 1

User is prompted to type two positive integers or two zeros to quit. 1

Program accepts two positive integers or zeros without crashing. (on one or two lines okay) 1

Correct cycle length is displayed.

• all four samples below, 5 points

• at least two samples, 3 points

5

Cycle length is labeled. 1

If two zeros are entered, program terminates, otherwise repeats. 1

TOTAL 10

Credit Card Validation (20 points)

Heading displays program name. 1

Friendly prompt to enter all but the last digit of a credit card number. 1
Accepts the input without crashing and without ending immediately. 2

Rejects or ignores invalid characters (only digits, spaces, and dashes are allowed). 3

For invalid input, displays a message stating that the input is invalid. 3

For valid input, correctly displays the last digit. 10

TOTAL 20

Long Multiplication (20 points)

Heading displays program name and team name. 1

Prompts for two positive integers, either one zero to quit. 1

Re-prompts if either integer is negative. 1
Quits if either integer is zero (provided it doesn't quit for other values). 1

Redisplays multiplicand and multiplier correctly formatted, right-justified, larger on top, with line of dashes drawn
underneath. (Correctly right-justifying all three lines sets the right margin by which all other subsequent alignment is
determined. If this margin is not correct, all alignment/indention points below are lost.)

1

Correctly displays all partial products on each line below. 5

Correctly displays all partial products on each line below, correctly indented from the right margin set previously. 4

Correctly draws a line of dashes and displays the product underneath the partial products. 2

Correctly draws a line of dashes and displays the product underneath the partial products, right-justified using the
right margin set previously.

2

Partial products equaling zero are omitted. 1

If the multiplier is a single digit, no partial product is displayed and only one line of dashes is drawn. 1

TOTAL 20

